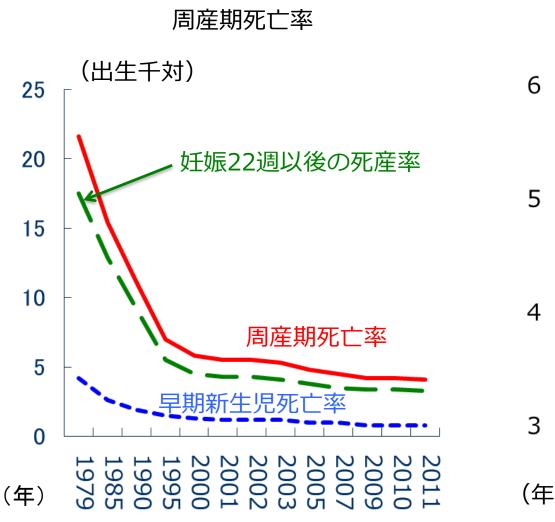
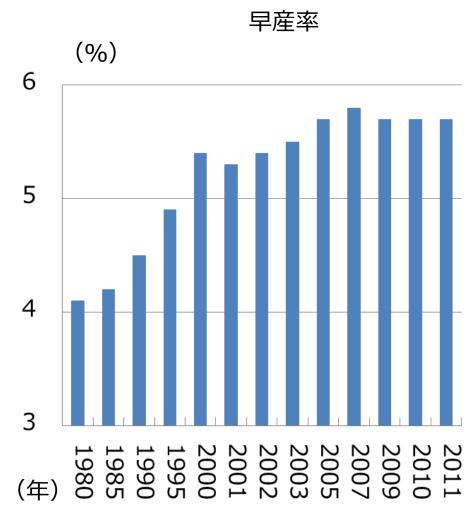


福岡大学新技術説明会

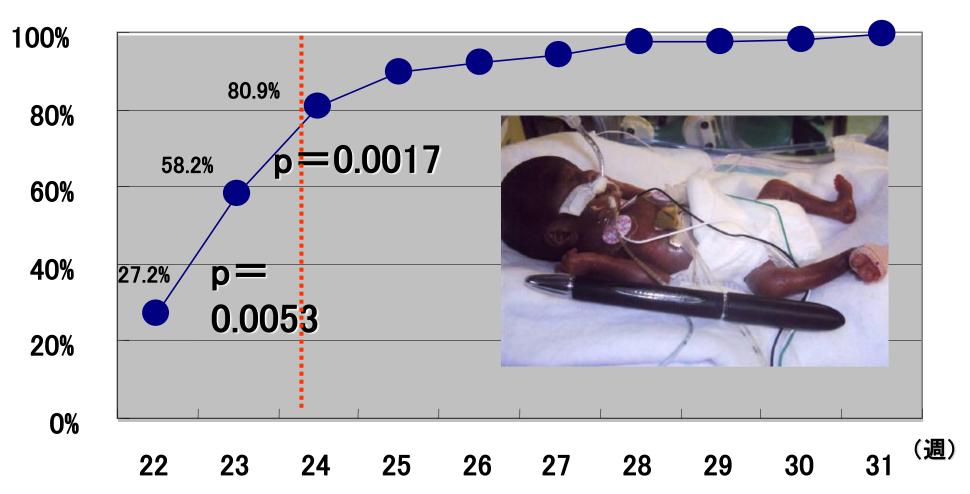
令和3年5月20日


母児の予後に重篤な子宮内感染の予知診断検査薬の開発


福岡大学 医学部 医学科 教授 宮本 新吾

E-mail; smiya@cis.fukuoka-u.ac.jp

本邦における周産期死亡率および早産の背景



母子保健の主なる統計、2012より

分娩時妊娠週数毎の生存率(死産を含まない)

新技術説明会 New Technology Presentation Meetings!

登録参加116施設における <u>51,650</u>分娩(周産期死亡数 <u>807</u>) 2001年における全分娩1,170,662の<u>4.4%</u> 周産期死亡総数6,333の <u>12.5%</u> (日産婦誌 <u>2004</u>)

これまでの研究成果

膣フローラの解析による絨毛膜羊膜炎予測陽性群と陰性群の特徴

	陽性群 (N=16)	陰性群 (N=27)	P value
入院週数 (weeks) (膣フローラ採取)	30.4	29.9	0.257
子宮頸管長(mm)	15.5	20.0	0.307
母体血清CRP値 (µg/ml)	0.35	0.30	0.828
Blanc II~III	14/16 (88 %)	11/27 (41 %)	0.004
分娩週数 (weeks)	31.6	33.9	0.017
妊娠延長期間 (days)	10.6	26.1	0.002
出生体重(g)	1591	1945	0.011
発達遅滞* (3歳時)	5/14 (36 %)	0/25 (0 %)	0.001

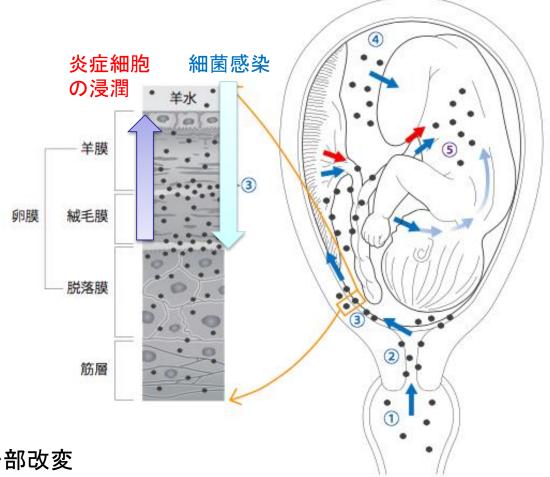
^{*} 染色体を含めたAnomaly症例を除く

子宮内感染の感染経路と診断法

⑥ 臨床的絨毛膜羊膜炎(CAM)

5組織学的絨毛膜羊膜炎

4胎児感染

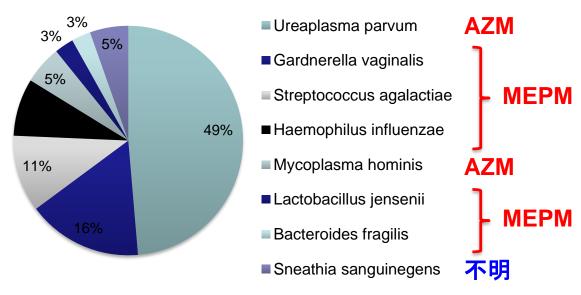

③羊水感染

②子宮頸管炎

①細菌性腟症など

産科医療保障制度報告書より引用, 一部改変

- 子宮内感染は妊娠中の診断が困難 (<u>羊水培養検査と臨床的CAMは低感度</u>)
- 抗菌薬投与?妊娠継続?帰結?



妊娠中に子宮内感染を 確実に診断できる 方法の確立が必要

子宮内感染の起炎菌と抗菌剤との関係

先行研究でmiCAM(羊水感染あり)と考えられた43例において、 記述 起炎菌と考えられた9菌種(特異プライマー作製し特許出願済)の検出率

	MEPM感受性	AZM感受性	最上位として検出された 症例数(割合)	わずかでも検出された (組成比0.1%以上)症例数(割合)
Ureaplasma parvum	×	0	18 (42%)	33 (77%)
Gardnerella vaginalis	0	不明	6 (14%)	11 (26%)
Streptococcus agalactiae	0	$\triangle(\pm)$	4 (9%)	5 (12%)
Haemophilus influenzae	0	0	3 (7%)	5 (12%)
Mycoplasma hominis	×	0	2 (5%)	3 (7%)
Lactobacillus jensenii	0	不明	1 (2%)	2 (5%)
Bacteroides fragilis	0	×	1 (2%)	2 (5%)
Sneathia sanguinegens	不明	不明	2 (5%)	4 (9%)
Capnocytophaga sputigena	0	不明	0 (0%)	1 (2%)

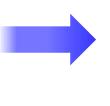
- Sneathia sanguinegensが最上位に検出された2例のうち1例(2.3%)は混合感染であった。
- Sneathia sanguinegensが検出されたのは4例(9%)であった。
- よって、MEPM+AZMが効くと想定 される症例は羊水感染例の91-98%に及ぶ。

羊水感染43例のうち最上位として検出された割合

これまでの絨毛膜羊膜炎治療の課題

- (1) 抗菌剤の選択
 - 羊水感染症例より起炎菌の同定
- (2) 治療効果の判定
 - 16S rDNA定量化による感染状況の評価
- (3) 治療症例の選択
 - NGSによる腟細菌叢の乱れの評価
- (4) Cytokine Stormの治療剤
 - 治療薬の開発

羊水感染及び感染状態を診断する検査キット開発

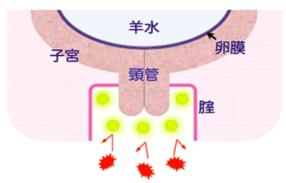

迅速NGS

ddPCR検査

NGS・ddPCR検査による診断

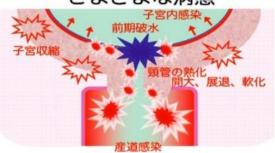
miCAMを含めた起炎菌診断

羊水感染の診断


羊水感染状態の診断

16S-rDNA定量診断

想定される子宮内感染に至る腟フローラの変化


膣の自浄作用による 正常な環境

善玉菌: Lactobacillus 桿菌 (乳酸桿菌)
・ 腟内を酸性に保ち異常細菌の侵入増殖を防ぐ
・・・・ 膣の自浄作用

悪玉菌:細菌性腟症を起こす細菌群

絨毛膜羊膜炎による さまざまな病態

子宮収縮 頸管熟化 前期破水

□□〉流産、早産

子宮内感染 (産道感染)

⇒ 胎児

胎児への感染

常位胎盤早期剥離

子宮内感染の成立

腟内細菌叢

- ◆ 種々の膣内常在細菌の細菌数が増加していく
- ◆ 子宮内感染の起炎菌と腟細菌叢変化との関連は不明瞭

多様化の出現

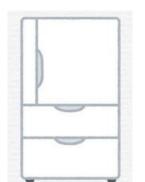
固定のメジャーな膣内常 在細菌の細菌数が減少

発明の名称:絨毛膜羊膜炎の発症予測方法

出腺番号 : PC1/JP2020/045298

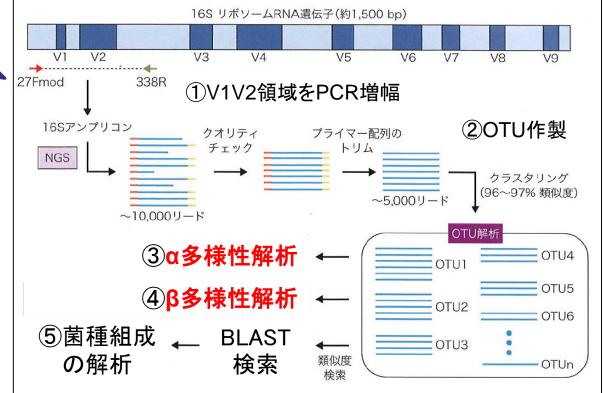
出願人 : 学校法人福岡大学、国立成育医療研究センター 発明者 : 漆山大知、四元房典、秦健一郎、宮本新吾

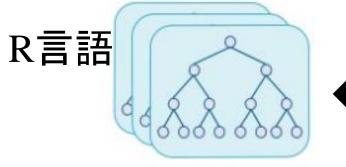
腟内細菌叢解析の方法



凍結保存

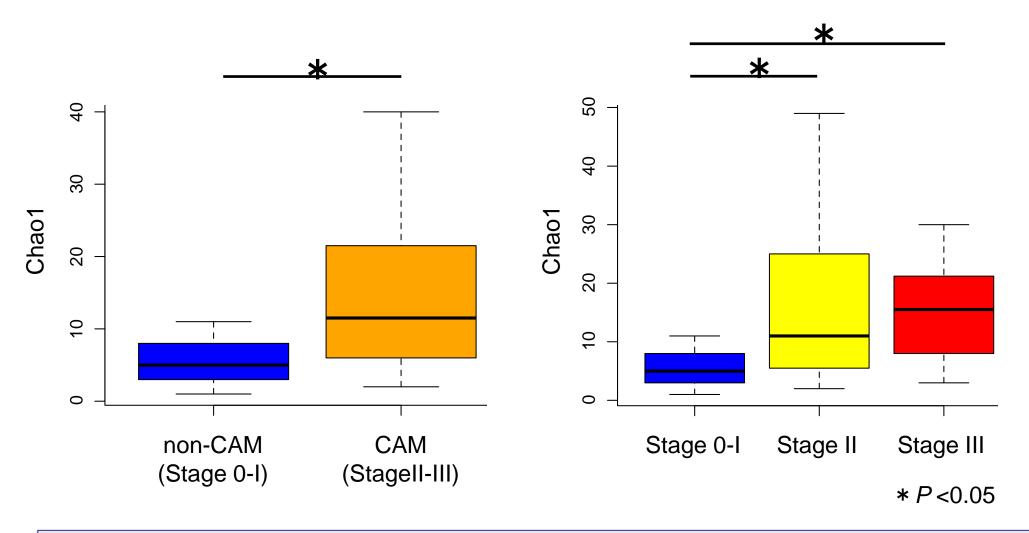
溶菌 DNA抽出





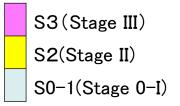
16S rDNA amplicon sequencing

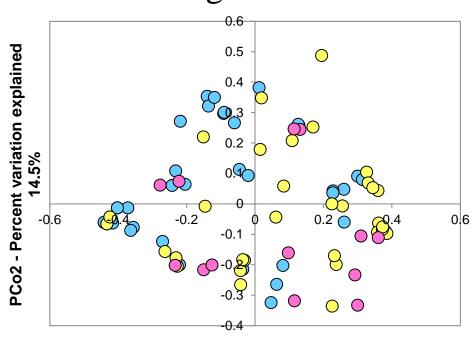
ランダムフォレスト(機械学習)



CAMに関連の強い菌を絞り込み、スコアリング法を作製した。

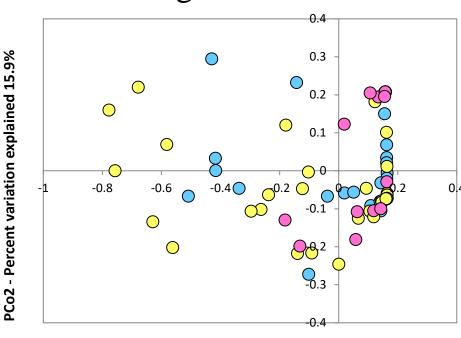
Chao1の比較(α多様性解析)


【方法】 各試料のChao 1(細菌の種類数に相当)を算出し、群間比較した.


【結果】CAM例ではα多様性が有意に高く、Stagingにも相関した. 【考察】CAMのリスク評価に有用な可能性あり、既報告と矛盾なし

各試料の細菌組成の比較(β多様性解析)

Un-weighted UF距離



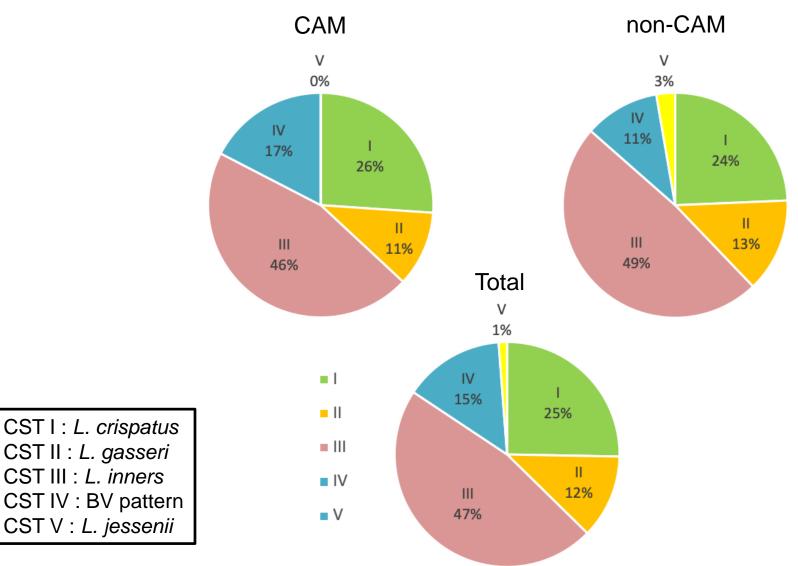
PCo1 - Percent variation explained 25.9%

PERMANOVA検定 (CAM vs non-CAM)

P < 0.001

Weighted UF距離

PCo1 - Percent variation explained 52.6%


P = 0.116

【結果】Un-weighted UF距離でのみ、分散の程度が有意に異なった。

【考察】組成比の低い菌で差があることが示唆された。

Community state types (CSTs) の比較

CAMの有無でCSTの分布に有意差はなかった。

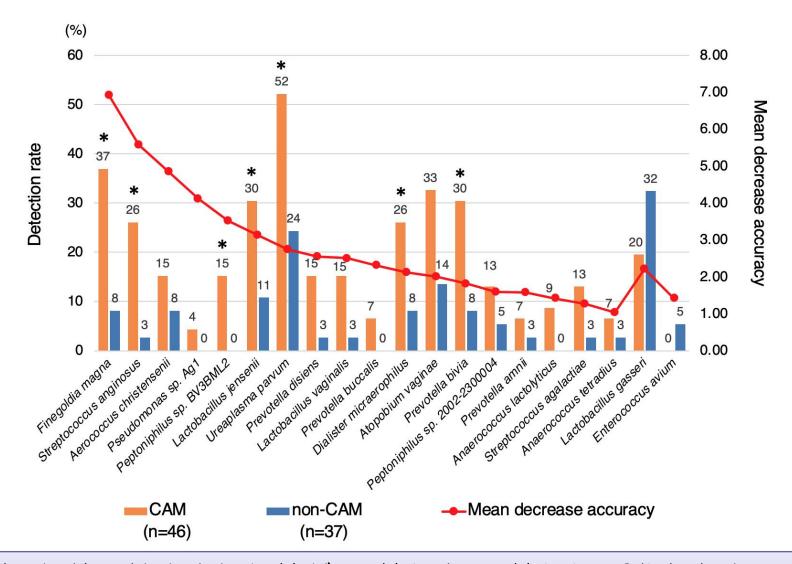
CST II: L. gasseri

CST III: L. inners

CST V : L. jessenii

High~Middle Income Countriesの分布であり、BVパターン の頻度なども既報告と矛盾なし。

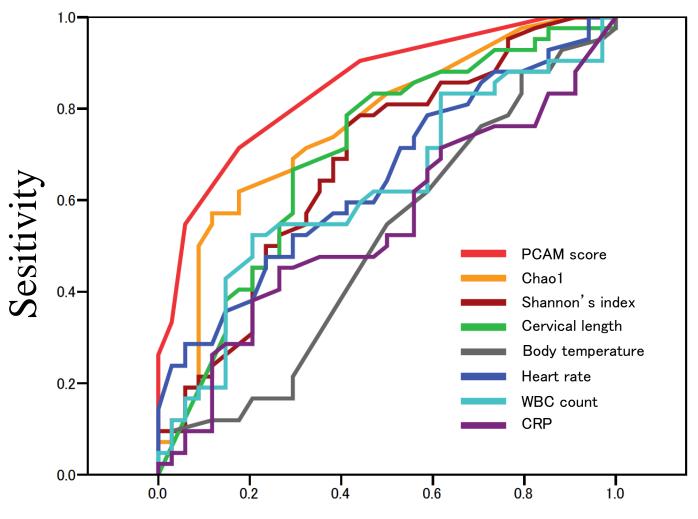
機械学習を用いたCAM関連菌の絞り込み


機械学習(Random Forest)を用いてCAMと関連の高かった上位20菌種(Mean decrease accuracy > 1.0)を同定した.

Name of bacterial species	Mean decrease accuracy	Predominant group
Finegoldia.magna	6.91	CAM
Streptococcus.anginosus	5.58	CAM
Aerococcus.christensenii	4.85	CAM
Pseudomonas.spAg1	4.12	CAM
Peptoniphilus.spBV3BML2	3.52	CAM
Lactobacillus.jensenii	3.13	CAM
Ureaplasma.parvum	2.74	CAM
Prevotella.disiens	2.55	CAM
Lactobacillus.vaginalis	2.50	CAM
Prevotella.buccalis	2.31	CAM
Dialister.micraerophilus	2.12	CAM
Atopobium.vaginae	2.01	CAM
Prevotella.bivia	1.82	CAM
Peptoniphilus.sp2002.2300004	1.59	CAM
Prevotella.amnii	1.58	CAM
Anaerococcus.lactolyticus	1.41	CAM
Streptococcus.agalactiae	1.27	CAM
Anaerococcus.tetradius	1.03	CAM
Lactobacillus.gasseri	2.21	non-CAM
Enterococcus.avium	1.42	non-CAM

- 絨毛膜羊膜炎と関連の高かった上位20菌種の全てが各サンプルで組成比 の低い菌であった。。
- ・ CAM群で多く検出された菌は20菌種中18菌種あり、菌種名まで同定できた菌は15菌種だった。

CAM関連菌(上位20菌種)の検出率



- CAM群で優位に検出された菌が20菌種中18菌種(90%)を占めていた一方、 non-CAM群で優位に検出された菌は20菌種中たった2菌種(10%)であった。
- 7菌種(*)は、CAM群において有意に高い頻度で検出された。

ROC曲線による予測診断精度の比較

【方法】作製したスコアリング法が臨床的な指標である体温・心拍数・白血球数・CRP値・子宮頸管長と一般的な16SrRNA遺伝子解析結果であるα多様性指数(chao1・Shannon's index)と比較して優れているかを検討するために、ROC曲線を描き、CAMの診断精度を比較した

機械学習の結果に α多様性の概念を応用して 新しいスコアリング法を開発

<PCAM score>

[CAM群優位菌のOTU数]ー [non-CAM群優位菌のOTU 数]

と定義した.

※OTU数:菌種の種類数

(α多様性指数の一つ)

False positive rate (1 - Specificity)

【結果】PCAM scoreが最もAUCが大きかった.

【考察】機械学習を取り入れてOTU数をカウントする手法はCAMの予測に有用であると推察される

ROC曲線による予測診断精度の比較

AUC (Area under curve) の一般的解釈

AUC	解釈
0.9-1.0	Outstanding
0.8-0.9	Excellent
0.7-0.8	Acceptable

Jayawant N, Receiver Operating Characteristic Curve in Diagnostic Test Assessment, *Journal of Thoracic Oncology* , 2010

	AUC (95%CI)	Cut-off value	Sensitivity	Specificity	Youden Index
PCAM score	0.849 (0.765 - 0.934)	1.5	0.714	0.824	0.538
chao1	0.760 (0.650 - 0.870)	9.8	0.571	0.882	0.453
shannon's index	0.683 (0.562 - 0.805)	0.26	0.762	0.588	0.350
Cervical length at sampling (mm)	0.702 (0.582 - 0.823)	21.5	0.786	0.588	0.374
Body temperature at sampling (°C)	0.506 (0.373 - 0.639)	36.5	0.881	0.206	0.087
Heart rate at sampling (/min)	0.648 (0.526 - 0.771)	96.5	0.476	0.765	0.241
WBC count in maternal peripheral blood at sampling (cells/ μL)	0.625 (0.498 - 0.752)	12150	0.524	0.794	0.318
CRP in maternal peripheral blood at sampling (mg/dL)	0.546 (0.415 - 0.676)	0.75	0.452	0.735	0.187

PCAM scoreは2以上を陽性、1以下を陰性と定義すると、 CAMの予測精度は感度71.4%, 特異度82.4%(AUC 0.849)と比較的高かった。

これまでの研究成果

膣フローラの解析によるCAM予測陽性群と陰性群の特徴

	陽性群 (N=16)	陰性群 (N=27)	P value
入院週数 (weeks) (膣フローラ採取)	30.4	29.9	0.257
子宮頸管長 (mm)	15.5	20.0	0.307
母体血清CRP値 (μg/ml)	0.35	0.30	0.828
Blanc II~III	14/16 (88 %)	11/27 (41 %)	0.004
分娩週数 (weeks)	31.6	33.9	0.017
妊娠延長期間 (Days)	10.6	26.1	0.002
出生体重(g)	1591	1945	0.011
発達遅滞* (3歳時)	5/14 (36 %)	0/25 (0 %)	0.001

^{*} 染色体を含めたAnomaly症例を除く

絨毛膜羊膜炎の腟細菌層解析予知診断

【総括】

- 切迫早産例で腟内細菌叢解析を行った。
- α 多様性指数は、CAM群で有意に高かった。
- B 多様性解析で分散の程度が, 両群で有意に異なった。
- Random forestでCAMと関連の強い上位20菌種を選び、 スコアリング(RFスコア)を作製したところ、診断精度は 高まった(AUC 0.84, 感度74%, 特異度78%)。
- ・PCAMスコアは妊娠延長期間と3歳時の発達障害と関連した。

【結論】

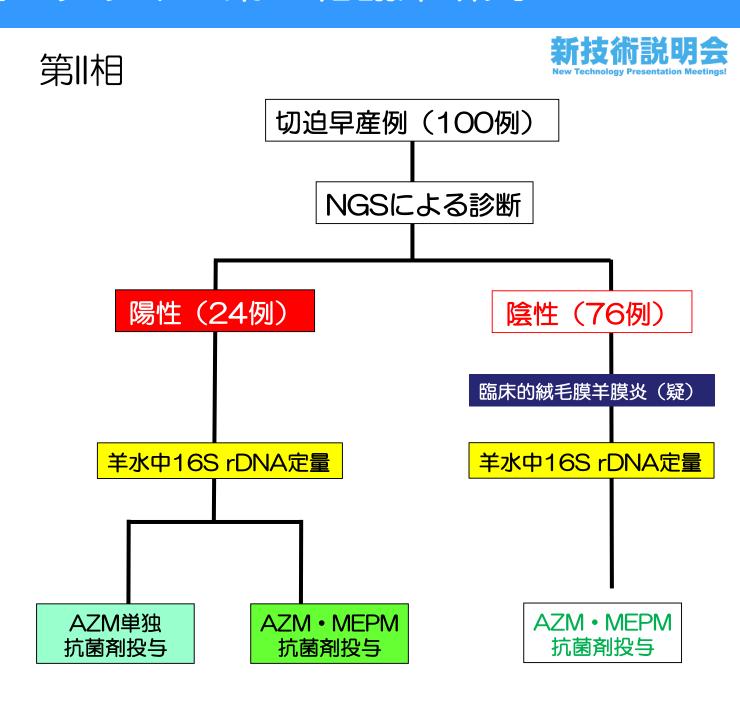
・<u>腟内細菌叢解析によってCAMを予測できる可能性が示された。</u>

臨床研究のデザイン第‖相臨床研究

対象

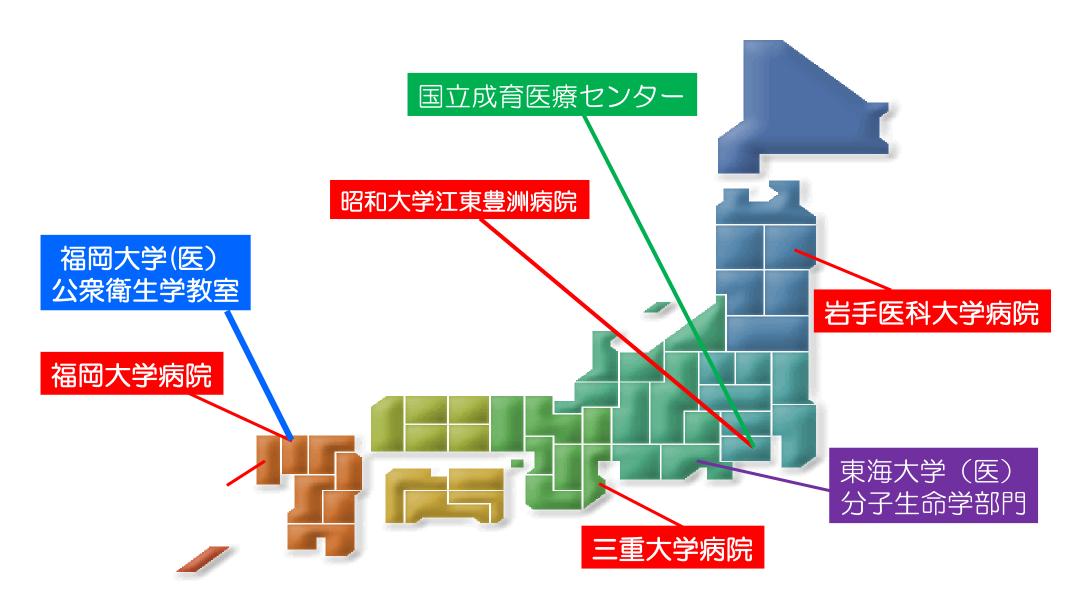
妊娠34週末満の切迫早産例(腟細菌叢のNGS解析にて絨毛膜 羊膜炎陽性と診断された症例)

主要評価項目

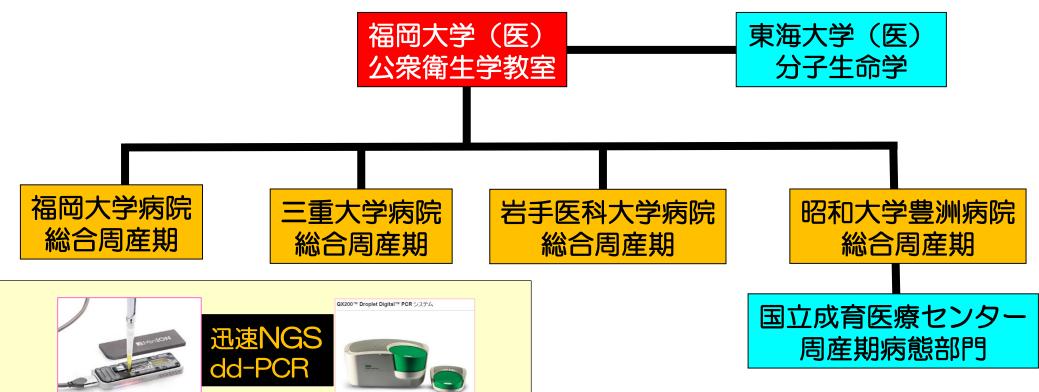

診断後抗菌剤治療を開始 #1 羊水バクテリアDNA の減少・増加抑制

副次評価項目

- #1 抗菌剤投与の安全性
- #2 胎盤病理の炎症性変化の評価
- #3 腟細菌叢の変化
- # 4 児の臨床的予後(短期)
- #5 妊娠期間の延長


参考: 臨床検体の検査

- #1 血中バイオマーカー (microRNA)の測定
- #2 分娩帰結時の羊水NGS検査



第‖相臨床研究

CAM特定臨床研究の実施体制

効果安全性委員:高松 潔 一福岡大学(医)

西川 宏明 -福岡大学(医)

永光信一郎 一福岡大学(医)

監査: 小林 新 (監査人)

モニター:各施設で臨床研究に参加しない医師

生物統計家:有馬久富一福岡大学(医)

事務局:福岡大学(医)産婦人教室

国立成育医療センター周産期病態部門

臨床研究登録センター:

福岡大学(医)公衆衛生学教室

これまでの絨毛膜羊膜炎治療の課題

- (1) 抗菌剤の選択
 - 羊水感染症例より起炎菌の同定
- (2) 治療効果の判定
 - 16S rDNA定量化による感染状況の評価
- (3) 治療症例の選択
 - NGSによる腟細菌叢の乱れの評価
- (4) Cytokine Stormの治療剤
 - 幹細胞治療あるいは上清を用いた治療薬の開発

新技術の特徴・従来技術との比較

- ➤従来のPCR検査では、腟細菌叢解析により 腟細菌叢の乱れを診断することは不可能で あった。
- ▶迅速型次世代シークエンス法の開発により、 迅速かつ容易に解析できるため、これまで の技術では診断薬開発は不可能であった。

想定される用途

- ▶ 腟細菌叢を妊娠早期(妊娠16週~20週)に解析することで、妊娠後期に想定される早産・切迫早産への迅速な対処が可能となる。
- > 喫緊の社会的課題の「少子化」の解決に資する。
- ▶ 腟細菌叢解析だけでなく、あらゆる複雑な混合細菌・ ウィルス感染の網羅的・統合的・定量的な迅速な解析・診断が可能となる。
- ▶ たとえば、新型コロナウィルス感染にみられる野生型 及び変異型の網羅的・統合的・定量的・迅速な診断が 可能となる。

実用化に向けた課題

- ▶ 腟細菌叢解析の陽性・陰性に診断システムの開発は終了し、実用化を特定臨床研究で、確認・検証する。
- ▶羊水感染の解析にも診断システムの開発を行い、実用化を確認・検証する。
- 診断が、治療の実践及び治療 効果に結び付くことを特定臨 床研究で検証する。

⑥<u>臨床的絨毛膜羊膜炎(CAM)</u>

⑤組織学的絨毛膜羊膜炎

④胎児感染

③羊水感染

②子宮頸管炎

①細菌性腟症など

企業への期待

膣内細菌叢解析によって絨毛膜羊膜炎(CAM) を予測できるシステムの開発・実用化に向けて

- ▶ 迅速型次世代シークエンス法を応用して、絨毛膜羊膜炎 (CAM)を網羅的・統合的・定量的に診断・治療することで、高齢妊婦化による新生児の身体的・精神的・社会的な健康増進に興味のある企業。
- ▶ 現在計画中の、予知診断、病状診断に基づき強力な抗菌剤 治療の開発を目的とする特定臨床研究への参加・協賛に興 味のある企業。
- ▶産婦人科分野だけでなく、細菌・ウイルス感染を、網羅的・統合的・定量的に診断・治療することで、新しい抗菌剤治療法、抗ウィルス剤治療法の開発に興味のある企業。

本技術に関する知的財産権

発明の名称:絨毛膜羊膜炎の発症予測方法

出願番号 : PCT/JP2020/045298

出願人・学校法人福岡大学、国立成育医療研究センター

発明者:宮本新吾、漆山大知、四元房典、秦健一郎

発明の名称:絨毛膜羊膜炎の発症予測方法

出願番号 : PCT/JP2020/045299

出願人・学校法人福岡大学、国立成育医療研究センター

発明者 : 漆山大知、四元房典、秦健一郎、宮本新吾

自己紹介

1983年 九州大学医学部卒業

1987年 九州大学生体防御医学研究所助手

1991年 学位取得

1993年 米国保健衛生研究所(NIH)留学

1996年 国立病院九州がんセンター勤務

2002年 九州大学医学部講師

2009年 福岡大学医学部教授

2017年 福岡大学病院副病院長

2019年 日本産科婦人科学会理事

専門:

卵巣癌を中心とした婦人科腫瘍学

診療:

卵巢癌根治術

腹腔鏡下子宮悪性腫瘍手術

ロボット支援下子宮悪性腫瘍手術

研究テーマ

HB-EGF関連分子を標的とする癌治療薬の開発

研究目的

- 1. 協和ーキリン社とがん標的治療薬及びコンパニオン診断薬の共同開発
- 2. 阪大微研会とのがん標的治療薬(生物製剤)及びコンパニオン診断薬の共同開発
- 3. ウルトラファインバブルによるDDSを活用した核酸医薬の開発

研究テーマ:再生医療を活用した不妊内分泌領域の治療法の開発

研究目的:

- 1. BMS社とのADRCs, ASCによる着床不全治療法の開発
- 2. 北里コーポレーション社との受精卵培養液の開発
- 3. ウルトラファインバブルを用いた培養液・治療液の開発

研究テーマ: 早産・早産児の保育への新たな診断法・治療法の開発

- 研究目的:
- 1. 絨毛膜羊膜炎の診断ー羊水細菌叢・膣細菌叢からの検査薬の開発
- 2. 絨毛膜羊膜炎の診断一羊水・母体血のサイトカイン・miRから検査薬の開発
- 3. 早産児保健の治療ー初乳中のRCAS1・サイトカインの臨床的意義
- 4. 切迫早産の治療方法の開発ーラクトフェリン・ビフィズス菌治療

お問い合わせ先

福岡大学研究推進部産学官連携センター

TEL 092-871-6631 FAX 092-866-2308

e-mail: sanchi@adm.fukuoka-u.ac.jp