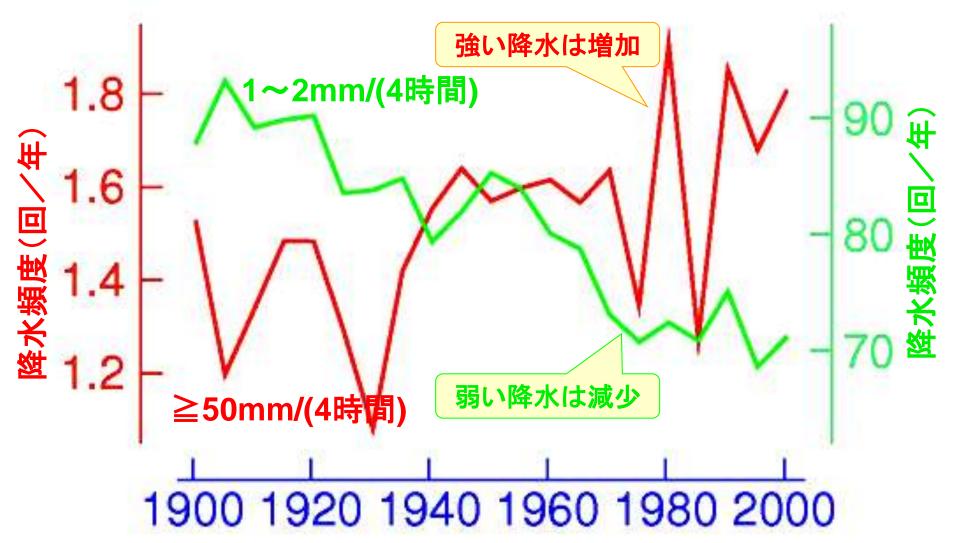
公共施設における 雨水流出抑制対策と費用対効果

近年発生した豪雨被害



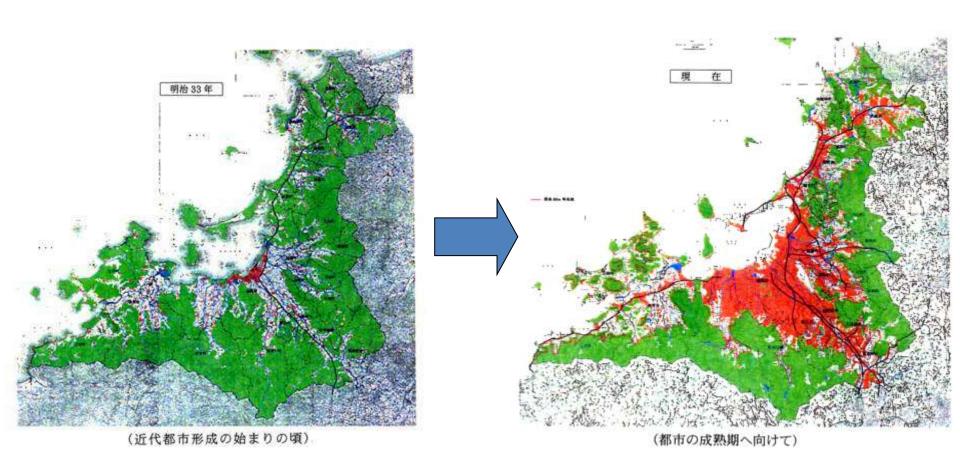
樋井川流域では、2009年7月の九州北部豪雨を受け、

- ●グランド・ため池⇒ 雨水貯留施設として活用
- ●個人住宅・集合住宅⇒ 雨水貯留タンクの設置

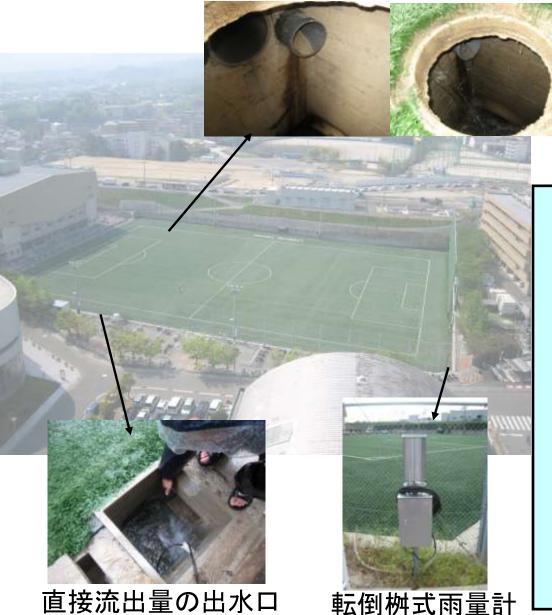
流出抑制を図る取り組みが行われている

降水頻度の経年変化(全国平均,年間)

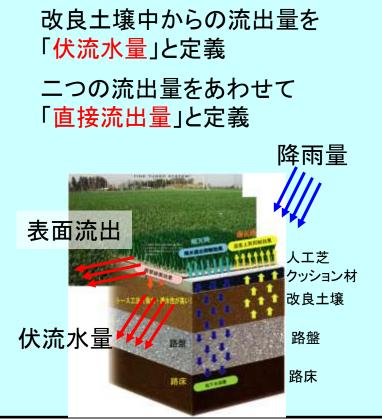
(藤部、気象庁デジタル統計情報に基づく)


H10年頃 友泉亭周辺

S30年頃 友泉亭周辺


明治33年と、平成11年の比較

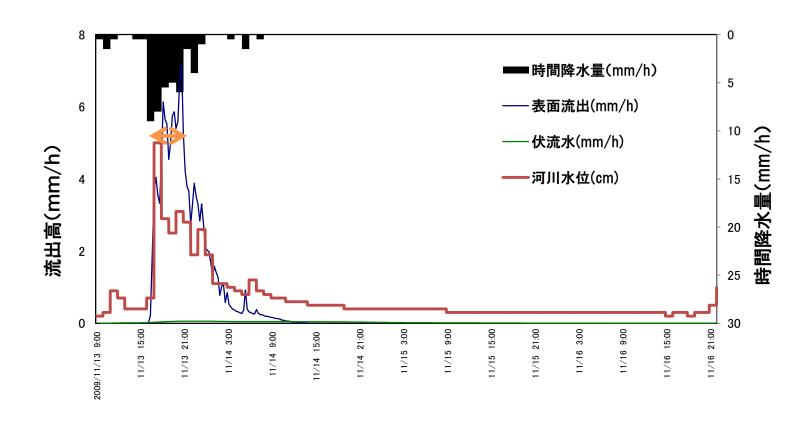
雨水流出量の増加、水循環の悪化


※福岡大都市圏における広域連携のあり方に関する研究 財)福岡都市科学研究所より

既往の研究

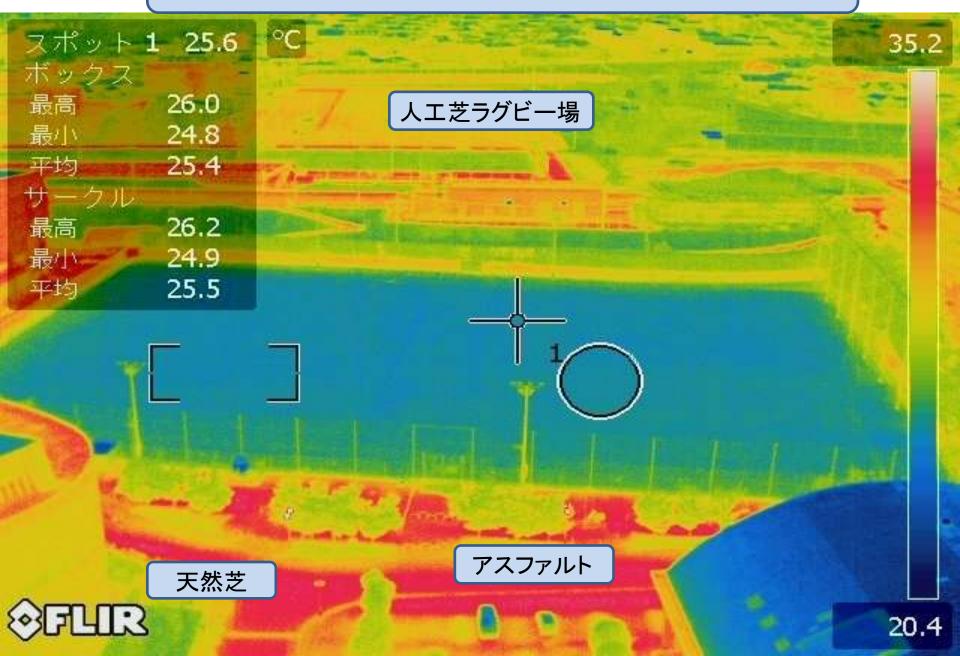
観測項目

- •降雨量
- ・人工芝表層からの流出量
- ・改良土壌中からの流出量

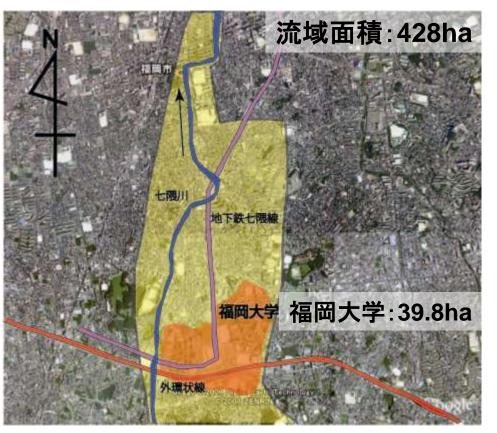

降雨量と流出時間

		流出遅れ			ピーク時間差			
総降雨量	観測日時	表面①	表面④	伏流①	表面①	表面④	伏流①	
25.5mm	2008/7/4	3h35min	2h50min	3h50min	0	0	8h	

総降雨量62.5mmの降雨では流出遅れが最大3時間45分、 ピーク時間差は2時間55分生じている


9mm	2008/9/25	20min	5min	0min	55min	55min	8h10min
62.5mm	2008/9/29	3h45min	3h30min	3h20min	2h55min	2h40min	2h50min

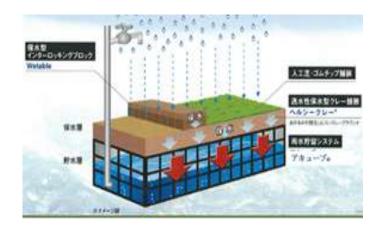
河川水位と流出高



河川水位のピークと流出高のピークは4時間半の差がある

サーモグラフィーによる温度測定結果

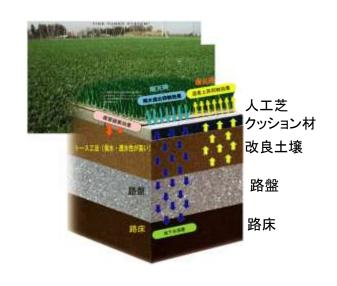
研究目的


雨水貯留浸透施設として 人工芝グラウンドを建設

- 人工芝グラウンドモデルの透水量、保水量を測定する ことにより流出抑制効果を検証する
- 貯留水の利用方法の検討を行う

貯留施設の設定

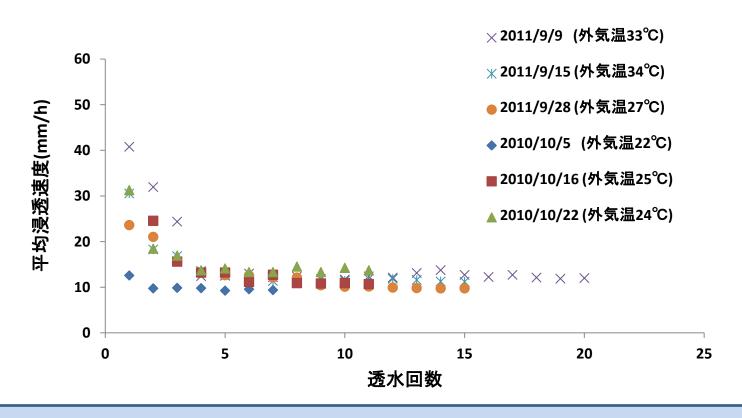
- 降雨は表面流出せずに人工芝グラウンド下の貯留施 設に全て貯留されるものとする
- 年間降雨量(1630mm)×集水面積(1万㎡)/ (1000×12)より貯留タンク容量を1350㎡に設定し、浸 透タンクは675㎡に設定する



実験概要

人工芝モデルを用いた降雨実験

- •0.9m×0.9m×0.9mのサッカー場のモデルを使用
- ・時間100mmの人工降雨を降らせる
- •流出量、初期流出時間を計測する


実験概要

室外実験施設における透水実験

- タンク上面の表層に3m×3m×10cmの木枠をはめ 込み外部からの雨水表面流の流入を遮断した.
- 枠内に5mmの雨を想定した水量(43.3L)を流し込み, 浸透時間の測定を行った

平均浸透速度と透水回数

透水実験を重ねるに連れ、平均浸透速度は減少傾向にあるが14mm/hは維持される

公共施設における雨水利用の検討

降水量と集水面積より貯留量を算出

貯留量を一人当たりの使用水量で除し施設利用人数を決定

雨水の使用水量分を上水道利用したと仮定し換算することで利益を算出

建設費用と利益より費用対効果を検討

利用者数と使用水量の関係

学生	学生使用水量(L/人*日)	教員	教員使用水量(L/人*日)	施設使用水量(t/日)
400	55	40	120	35
300	55	30	120	25
200	55	20	120	20

年間を通して常に使用可能な水量は25(t/日)である為、 一人当たりの使用水量から施設利用者数を学生300 人、教員30人と設定する

管径に対する上水道料金

口径	基本料金(円)	使用水量(㎡)	1㎡/円	ニヶ月金額(円)	ーヶ月金額(円)	一年(円)
250mm	1,892,000	1,500	497	2,664,338	1,332,169	15,986,028
200mm	1,022,000	1,500	497	1,794,338	897,169	10,766,028
150mm	638,000	1,500	497	1,410,338	705,169	8,462,028
100mm	258,400	1,500	497	1,030,738	515,369	6,184,428
75mm	119,400	1,500	497	891,738	445,869	5,350,428
50mm	42,200	1,500	497	814,538	407,269	4,887,228
40mm	21,840	1,500	497	794,178	397,089	4,765,068

上水道の管径を250mmに設定した場合年間約1600万円 の利益が出る為、建設費用の4000万円を2年8ヶ月で返 却できる

太陽光発電における利用

- ・ 九州電力メガソーラー大牟田発電所の基本設計値 を基に発電量の算出を行う
- 太陽光パネルの表面温度が10℃低下毎に発電効率が4%増加すると設定する
- 貯留水をパネル表面に散水し、低下温度から発電 増加量、増加金額を算出する

雨水利用の概要

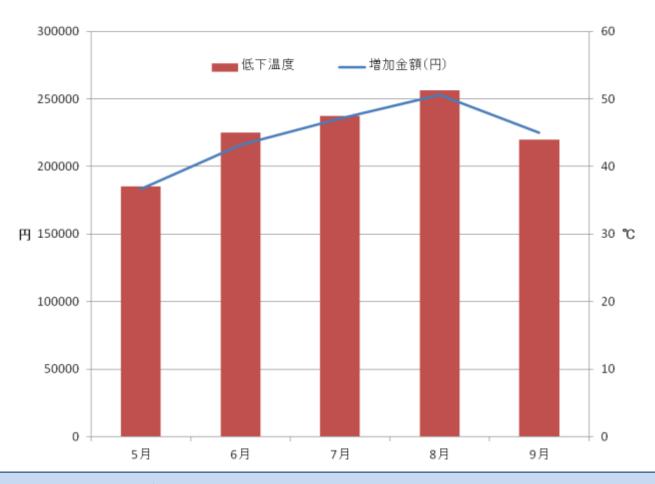
大規模発電施設における雨水利用

- 5月から9月の期間において太陽光パネル上に貯留 水を散水し表面温度を低下させる
- 10℃につき4%の発電効率が上昇すると設定し発電 増加量を算出
- 買取保障期間である20年間での利益を算出

太陽光発電における雨水利用の設定フロー

太陽光パネルの表面温度を設定

既存の地下貯留施設において測定した貯留水の温度と表面温度の差より低下温度を算出

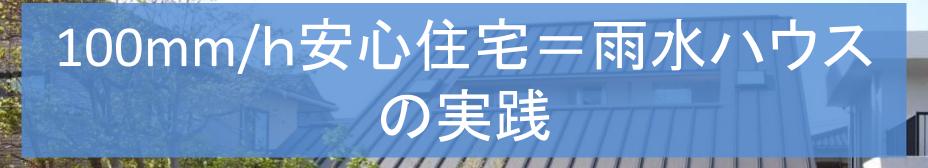


太陽光パネル表面の温度低下による発電増加量を算出

発電増加量に買い取り価格の40円を乗じ散水による利益を算出

パネル表面の低下温度と増加金額の関係

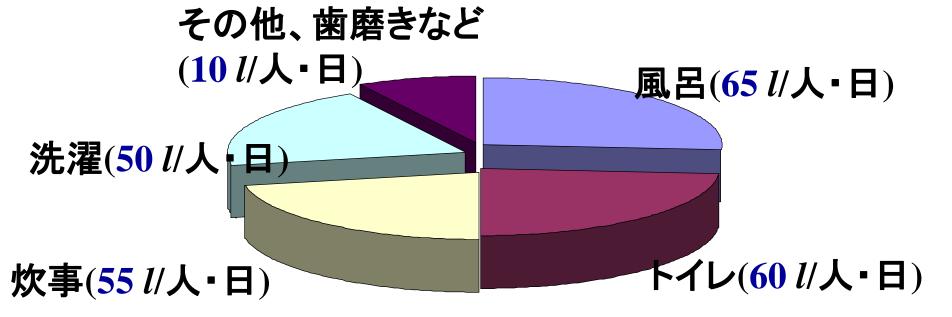
パネル表面温度が高いほど散水による温度低下が大きく増加金額も高い傾向である


各月の低下温度と増加金額

月	平均表面温度	平均貯留水温	低下温度	増加量(%)	発電増加量(kw/日)	増加金額(円/日)	増加金額(円/月)	20年
5月	55	18	37	15	148	5,920	183,520	3,670,400
6月	65	20	45	18	180	7,200	216,000	4,320,000
7月	70	23	48	19	190	7,600	235,600	4,712,000
8月	80	29	51	29	11	8,160	255,481	5,109,620
9月	70	23	44	18	176	7,040	225,120	A 502 A00
								22,314,420

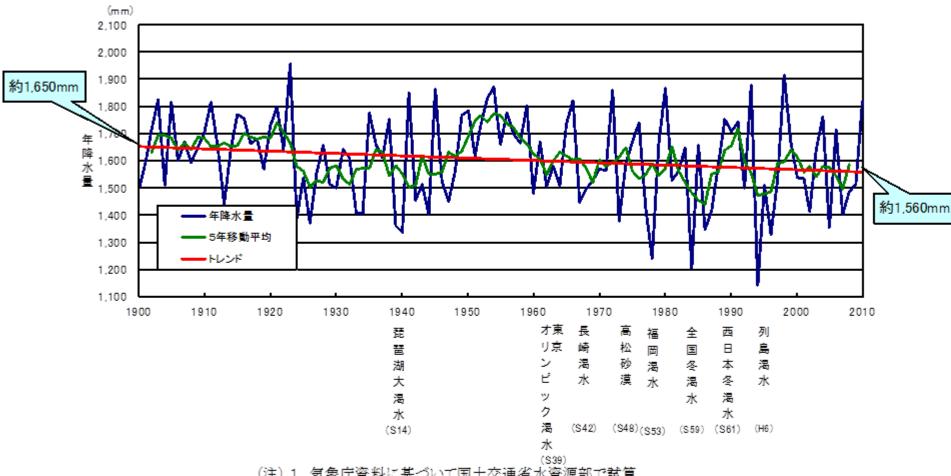
5月から9月までの期間で散水を行うと20年間で約2230万円の利益が出る

まとめ


- 河川水位と流出高のピークは4時間半の差があることから流出抑制に効果が発揮されている。
- グラウンドに貯留施設を設置した際には降雨をすべて貯留することが可能である。
- 貯留雨水を利用することで利益が得られ施設の普及につながる

ふくおか川の勉強会渡辺亮一福岡大学水循環・生態系再生研究所工学部社会デザイン工学科流域システム研究室福岡県建築士会NPO南畑ダム貯水する会

水の危機;沖大幹著より引用


日本ではどの位水を使ってる?

家庭での水利用 250 l/人・日(東京都平成10年度) 都会全体では約 310 l/人・日(散水、噴水、病院、...) ⇔飲み水は2~3 l/人・日

風呂、トイレ、炊事、洗濯 ←全部洗浄用!!

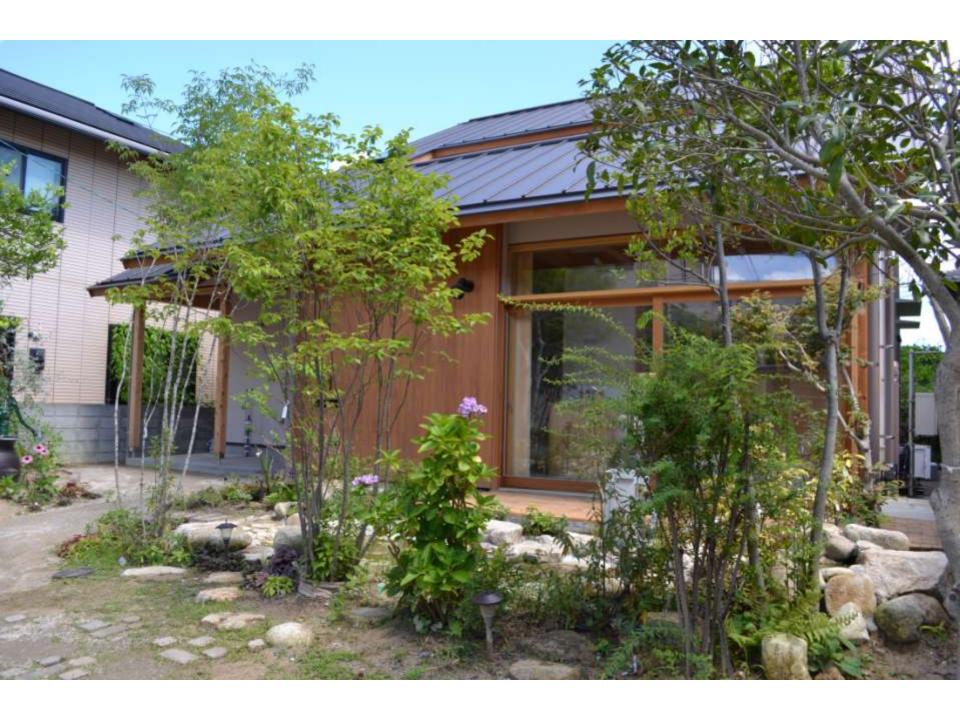
「水を使うことは水に汚れを運んでもらうこと」

- (注) 1. 気象庁資料に基づいて国土交通省水資源部で試算。
 - 2. 全国51地点の算術平均値。
 - 3. トレンドは回帰直線による。
 - 4. 各年の観測地点数は、欠測等により必ずしも51地点ではない。

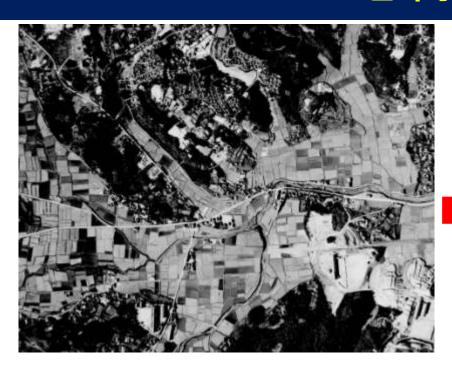
日本の年降水量の経年変化(1900~2010年)

マイホームダム広げたい

佐城の福岡市城南区田島地区 た上学部市教授の度辺延一さ た上学部市教授の度辺延一さ


(百選ストロングス) (百選ストロングス)

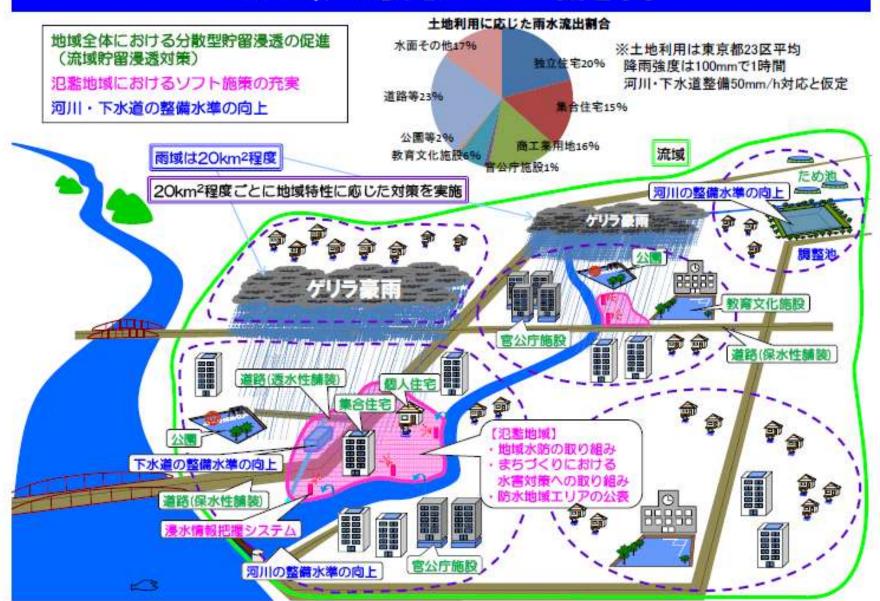
(指京平不任審路員(東西)生任中第二条秋山純一個


海難等後地水大和(四個田

(数信北

水、粉水(朝民)を家庭から

土地利用の変化



平成10年頃 友泉亭周辺

個人住宅の面積は樋井川流域面積の約20%を占める

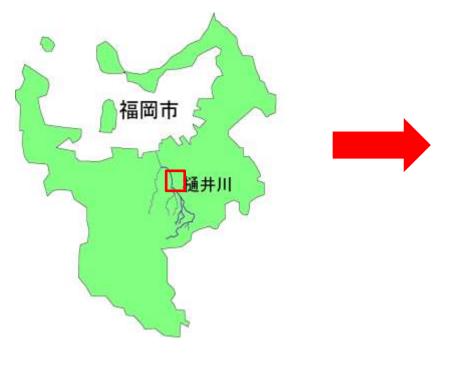
今後は各個人住宅での雨水流出抑制対策が重要となる.

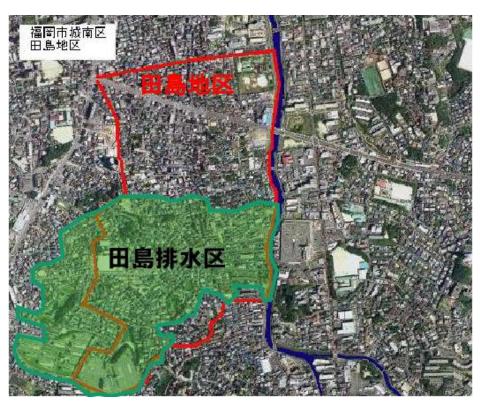
100ミッ/h安心プラン 概念図

国土交通省 河川局HPより引用(2012)

何故、100mm安心住宅が必要なのか?

国土交通省が提案している100mm安心プランによれば、


- ・地域全体における分散型貯留浸透施設の推進 一流出抑制のための官民協力した雨水貯留浸透の推進 ※一 定面積ごとの雨水貯留浸透の整備
- とあります。今回、完成した100mm安心住宅は、まさに分散型貯留を実現している住宅となります。


この100mm安心住宅の貯留能力は、設計最大値で約42トン (17.3+22.5+2=41.8トン)です。今後、データを蓄積してどの程度の大きさのタンクであれば、都市型水害抑制に効果を発揮するかを実証します。

また、貯留した雨水は、庭の維持用水と生活用水として利用します!!

田島排水区における雨水貯留タンク設置による流出量低減率の試算

田島排水区内に2000, 6t, 16t, 32tまでの雨水貯留タンクを何割の住宅に設置すれば、どの程度の流出量が削減されるか.

面積:58.37ha

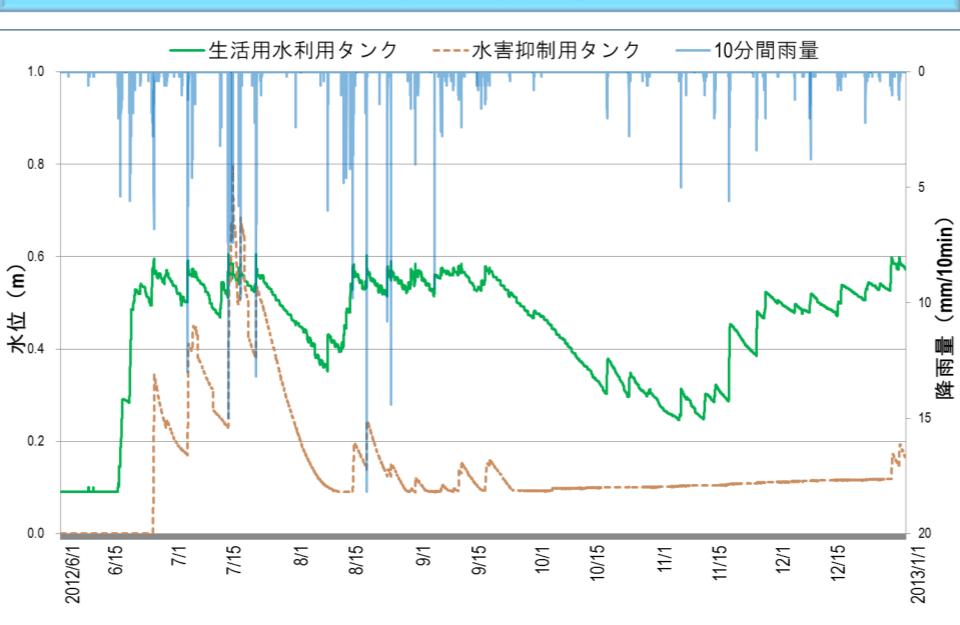
個人住宅件数:1,016件

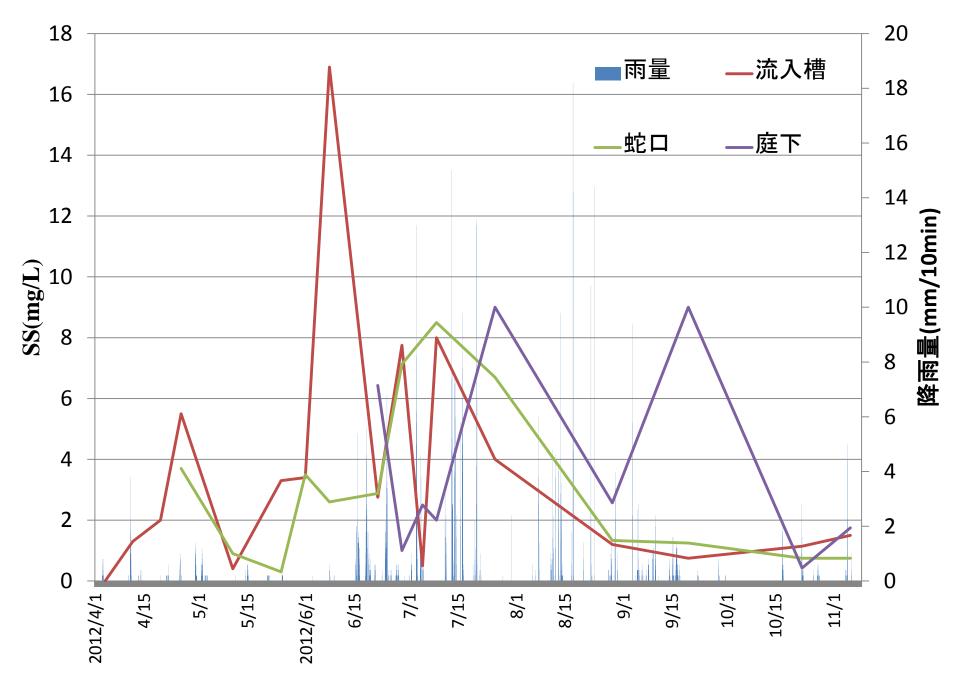
田島排水区における雨水貯留タンク設置による流出量低減率の試算

タンクの容量	住宅でのタンク	設置件数	貯水容量(t)	流出量低減率				
ダングの谷里	設置割合(%)	改画什数 灯小谷里(じ)		70mm/h	80mm/h	90mm/h	100mm/h	
	10%	102	20	0.6%	0.3%	0.2%	0.1%	
2002	20%	203	41	1.2%	0.6%	0.4%	0.3%	
2002	40%	406	81	2.3%	1.2%	0.8%	0.6%	
	100%	1,016	203	5.8%	2.9%	1.9%	1.5%	
	10%	102	610	17%	9%	6%	4%	
61	20%	203	1,219	35%	17%	12%	9%	
6t	40%	406	2,438	70%	35%	23%	17%	
	100%	1,016	6,096	100%	87%	58%	44%	
	10%	102	1,626	46%	23%	15%	12%	
16t	20%	203	3,251	93%	46%	31%	23%	
100	40%	406	6,502	100%	93%	62%	46%	
	100%	1,016	16,256	100%	100%	100%	100%	
	10%	102	3,251	93%	46%	31%	23%	
32t	20%	203	6,502	100%	93%	62%	46%	
J SZL	40%	406	13,005	100%	100%	100%	93%	
	100%	1,016	32,512	100%	100%	100%	100%	

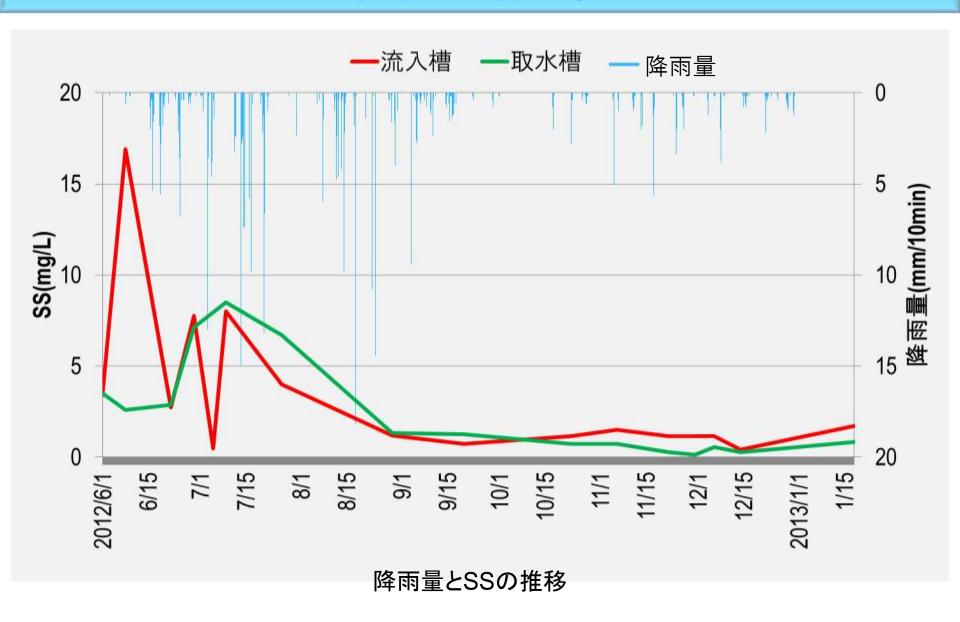
100mm安心住宅 平面図




住宅の基礎部分と一体化した17.3tの地下 雨水貯留タンク



駐車場の地下は


24.5tの雨水浸透槽

 SSの結果からタンク内の雨水は、殺菌・除菌をしないで そのまま利用することができる日本建築学会が示す整 雨レベルⅢに相当する

制菌		制菌	
整雨	Α	В	С
レベル I			庭木等水やり、打ち水、泥落とし、浸透、 雨池、ビオトープ池
レベルⅡ			器具などの下洗い、 洗浄清掃
レベルⅢ			トイレ流し水、洗濯、 洗車、冷却水、機械 灌水
レベルⅣ	洗面、飲用、調理	温水洗浄便座用水、 風呂	

整雨レベル	方法
I	雨を集めてそのまま使う
I	粗いゴミや初期雨水を除去して用いる
Ш	沈殿、ろ過等により、細砂、泥分などを十分に除去して用いる
IV	活性炭、高機能フィルター等の処理によりコロイド成分を十分に除去して用いる

制菌	方法
Α	塩素消毒、オゾン殺菌、紫外線殺菌、逆浸透膜、煮沸等の処理をし
(殺菌・無菌)	て用いる
В	膜ろ過(精密ろ過膜、限外ろ過膜)等の処理をして用いる
(除菌)	
С	制菌をせずにそのまま使う

トイレ・洗濯で使うには 問題ない

検 査 項 目	検査	結 果	基準値 *	検 査 項 目	検査結果	基準値 *
一般細菌	35	CFU/mL	100 CFU/mL以下	35 ナトリウム及びその化合物	8.9 mg/L	200 mg/L以下
大腸菌	不検出		検出されないこと	36 マンガン及びその化合物	0.005 mg/L未	満 0.05 mg/L以下
カドミウム及びその化合物	0. 0003	mg/L未満	0.003 mg/L以下	37 塩化物イオン	0,6 mg/L	200 mg/L以下
水銀及びその化合物	0. 00005	mg/L未満	0.0005 mg/L以下	38 カルシウム、マグネシウム等 (硬度)	29.5 mg/L	300 mg/L以下
セレン及びその化合物	0.001	mg/L未満	0.01 mg/L以下	39 蒸発残留物	90 mg/L	500 mg/L以下
鉛及びその化合物	0.001	mg/1.未満	0.01 mg/L以下	40 陰イオン界面活性剤	0.02 mg/L未	満 0.2 mg/L以下
ヒ素及びその化合物	0.001	mg/L未満	0.01 mg/L以下	41 ジェオスミン	0.000001 mg/L未	満 0.00001 mg/L以 [*]
六価クロム化合物	0. 005	mg/L未満	0.05 mg/L以下	42 2-メチルイソボルネオール	0.000001 mg/L未	满 0.00001 mg/L以
シアン化物イオン及び塩化シアン	0.001	mg/L未満	0.01 mg/L以下	43 非イオン界面活性剤	0.002 mg/L未	満 0.02 mg/L以下
0 硝酸態窒素及び亜硝酸態窒素	0. 57	mg/L	10 mg/L以下	44 フェノール類	0.0005 mg/L未	満 0.005 mg/L以下
1 フッ素及びその化合物	0. 05	mg/L未満	0.8 mg/L以下	45 有機物 [全有機炭素(TOC)の量]	0.8 mg/L	3 mg/L以下
2 ホウ素及びその化合物	0. 02	mg/L未満	1.0 mg/L以下	46 pH値(測定時水温)	★ 10. 2 (22°C)	5.8以上8.6以下
3 四塩化炭素	0.0002	mg/L未満	0.002 mg/L以下	47 味	異常でない	異常でないこと
4 1, 4-ジオキサン	0.005	mg/L未満	0.05 mg/L以下	48 臭気	異常でない	異常でないこと
5 シス-1,2-ジクロロエチレン及びトラ ンス-1,2-ジクロロエチレン	0.001	mg/L未満	0.04 mg/L以下	49 色度	3 度	5 度以下
6 ジクロロメタン	0.0005	mg/L未満	0.02 mg/L以下	50 濁度	0.2 度	2 度以下
7 テトラクロロエチレン	0.0005	mg/L未満	0.01 mg/L以下	- 遊離残留塩素(採水時)	0.1 mg/L未	満 —
8 トリクロロエチレン	0. 0005	mg/L未満	0.01 mg/L以下	- 以下余白-		
9 ベンゼン	0.0005	mg/L未満	0.01 mg/L以下			
0 塩素酸	0.06	mg/L未満	0.6 mg/L以下			
1 クロロ酢酸	0.002	mg/L未満	0.02 mg/L以下			
2 クロロホルム	0. 0005	mg/L未満	0.06 mg/L以下	コエノギ 士	ベイの	古口
3 ジクロロ酢酸	0.002	mg/L未満	0.04 mg/L以下	ほぼすん		烘日 -
4 ジブロモクロロメタン	0.0005	mg/L未満	0.1 mg/L以下			
5 臭素酸	0.001	mg/L未満	0.01 mg/L以下	┍で問題が	かくナン 1 へ	
6 総トリハロメタン	0.0005	mg/L未満	0.1 mg/L以下		7,40.	
7 トリクロロ酢酸	0.002	mg/L未満	0.2 mg/L以下			
8 プロモジクロロメタン	0.0005	mg/L未満	0.03 mg/L以下			
9 ブロモホルム	0. 0005	mg/L未満	0.09 mg/L以下			
) ホルムアルデヒド	0.008	ng/L	0.08 mg/L以下			
1 亜鉛及びその化合物	0.021	ng/L	1.0 mg/L以下			
2 アルミニウム及びその化合物	★ 0. 27	ng/L	0.2 mg/L以下			+
3 鉄及びその化合物	0. 03	mg/L未満	0.3 mg/L以下			
1 900 人 いて の 1 日 日 49						

年月日	上水道料金(円)	使用水量 (m³)	1人1日当たりの水道水使用量(m³)				
平成23年5月18日~7月19日	8,956	50	0.208				
7月19日~9月17日	6,405	40	0.167				
9月17日~11月17日	7,425	44	0.183				
平成24年6月5日~8月3日	4,940	31	0.125				
8月3日~10月3日	4,126	26	0.105				
10月3日~12月4日	5,428	34	0.137				
*本格的にトイレへ雨水利用開始したのは5月18日							
*本格的に洗濯に雨水利用開始したのは6月16日							

まとめ

- 最も雨が降る梅雨時期にも雨水を流出すること がない
- ・ 2012年7月に発生した九州北部豪雨でも雨水を 流出することはなかった
- 水質分析の結果からトイレ・洗濯に用いることに問 題はない

以上より雨水流出抑制効果は十分に期待でき、個人での治水が可能であると言えます。また、貯留された雨水は問題なく使用できます。